4
 UNIVERSITY OF SOUIHCAROLINA

What Do Analysts Do?

Duncan Wright
AWM Workshop

March 2, 2018

- Calculus
- Calculus
- Complex Analysis

UNIVERSITY OF
 C造y

- Calculus
- Complex Analysis
- Analysis on Function Spaces
- Calculus
- Complex Analysis
- Analysis on Function Spaces
- Mathematical Physics

Calculus

- Limits

Calculus

- Limits
- Continuity

Calculus

- Limits
- Continuity
- Derivatives

Calculus

- Limits
- Continuity
- Derivatives
- Series

Complex Analysis

- $f(x+i y)=u(x, y)+i v(x, y)$

Complex Analysis

- $f(x+i y)=u(x, y)+i v(x, y)$
- Differentiable at z_{0} if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists

Complex Analysis

- $f(x+i y)=u(x, y)+i v(x, y)$
- Differentiable at z_{0} if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists
- Differentiable on an open set

Complex Analysis

- $f(x+i y)=u(x, y)+i v(x, y)$
- Differentiable at z_{0} if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists
- Differentiable on an open set implies infinitely differential on that open set!

Linear Functions on \mathbb{C}^{n}

- The observable universe is finite!

Linear Functions on \mathbb{C}^{n}

- The observable universe is finite!
- Linear operators on \mathbb{C}^{n} are just $n \times n$ complex matrices.

Linear Functions on \mathbb{C}^{n}

- The observable universe is finite!
- Linear operators on \mathbb{C}^{n} are just $n \times n$ complex matrices.
- Linear operators on the linear operators on \mathbb{C}^{n} are just $n^{2} \times n^{2}$ complex matrices.

Mathematics and Physics

"A good physicist uses formalism as a poet uses language. He justifies the neglect of the commands of rigor by an eventual appeal to physical truth, as a mathematician cannot permit himself to do."

-Yu. I. Manin

Spectrum of Elements

UNIVERSITY OF

 milhm SOUIHCAROLINA束道
Spectrum of Elements

UNIVERSITY OF

Mathematical Formulation of Quantum Mechanics

- Observables are self-adjoint operators on a Hilbert space

Mathematical Formulation of Quantum Mechanics

- Observables are self-adjoint operators on a Hilbert space
- States are norm 1 positive, trace-class operators on a Hilbert space

Mathematical Formulation of Quantum Mechanics

- Observables are self-adjoint operators on a Hilbert space
- States are norm 1 positive, trace-class operators on a Hilbert space
- Probabilities and expectations are found using inner products

Mathematical Formulation of Quantum Mechanics

- Observables are self-adjoint operators on a Hilbert space
- States are norm 1 positive, trace-class operators on a Hilbert space
- Probabilities and expectations are found using inner products Finite dimensional Hilbert spaces are just \mathbb{C}^{n} !!!

Questions?

