

UNIVERSITY OF

What Do Analysts Do?

Duncan Wright AWM Workshop March 2, 2018

- Calculus
- Complex Analysis

- Calculus
- Complex Analysis
- Analysis on Function Spaces

- Calculus
- Complex Analysis
- Analysis on Function Spaces
- Mathematical Physics

- Limits
- Continuity

- Limits
- Continuity
- Derivatives

- Limits
- Continuity
- Derivatives
- Series

•
$$f(x + iy) = u(x, y) + iv(x, y)$$

- f(x+iy) = u(x,y) + iv(x,y)
- Differentiable at z_0 if $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ exists

$$f(x+iy) = u(x,y) + iv(x,y)$$

- Differentiable at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists
- Differentiable on an open set

$$f(x+iy) = u(x,y) + iv(x,y)$$

- Differentiable at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists
- Differentiable on an open set implies infinitely differential on that open set!

Linear Functions on \mathbb{C}^n

The observable universe is finite!

Linear Functions on \mathbb{C}^n

- The observable universe is finite!
- Linear operators on \mathbb{C}^n are just $n \times n$ complex matrices.

Linear Functions on \mathbb{C}^n

- The observable universe is finite!
- Linear operators on \mathbb{C}^n are just $n \times n$ complex matrices.
- ► Linear operators on the linear operators on Cⁿ are just n² × n² complex matrices.

Mathematics and Physics

"A good physicist uses formalism as a poet uses language. He justifies the neglect of the commands of rigor by an eventual appeal to physical truth, as a mathematician cannot permit himself to do."

-Yu. I. Manin

Spectrum of Elements

Spectrum of Elements

Observables are self-adjoint operators on a Hilbert space

- Observables are self-adjoint operators on a Hilbert space
- States are norm 1 positive, trace-class operators on a Hilbert space

- Observables are self-adjoint operators on a Hilbert space
- States are norm 1 positive, trace-class operators on a Hilbert space
- Probabilities and expectations are found using inner products

- Observables are self-adjoint operators on a Hilbert space
- States are norm 1 positive, trace-class operators on a Hilbert space
- Probabilities and expectations are found using inner products

Finite dimensional Hilbert spaces are just \mathbb{C}^{n} !!!

Questions?

